3 research outputs found

    Calibration and Evaluation of Outlier Detection with Generated Data

    Get PDF
    Outlier detection is an essential part of data science --- an area with increasing relevance in a plethora of domains. While there already exist numerous approaches for the detection of outliers, some significant challenges remain relevant. Two prominent such challenges are that outliers are rare and not precisely defined. They both have serious consequences, especially on the calibration and evaluation of detection methods. This thesis is concerned with a possible way of dealing with these challenges: the generation of outliers. It discusses existing techniques for generating outliers but specifically also their use in tackling the mentioned challenges. In the literature, the topic of outlier generation seems to have only little general structure so far --- despite that many techniques were already proposed. Thus, the first contribution of this thesis is a unified and crisp description of the state-of-the-art in outlier generation and their usages. Given the variety of characteristics of the generated outliers and the variety of methods designed for the detection of real outliers, it becomes apparent that a comparison of detection performance should be more distinctive than state-of-the-art comparisons are. Such a distinctive comparison is tackled in the second central contribution of this thesis: a general process for the distinctive evaluation of outlier detection methods with generated data. The process developed in this thesis uses entirely artificial data in which the inliers are realistic representations of some real-world data and the outliers deviations from these inliers with specific characteristics. The realness of the inliers allows the generalization of performance evaluations to many other data domains. The carefully designed generation techniques for outliers allow insights on the effect of the characteristics of outliers. So-called hidden outliers represent a special type of outliers: they also depend on a set of selections of data attributes, i.e., a set of subspaces. Hidden outliers are only detectable in a particular set of subspaces. In the subspaces they are hidden from, they are not detectable. For outlier detection methods that make use of subspaces, hidden outliers are a blind-spot: if they hide from the subspaces, searched for outliers. Thus, hidden outliers are exciting to study, for the evaluation of detection methods that use subspaces in particular. The third central contribution of this thesis is a technique for the generation of hidden outliers. An analysis of the characteristics of such instances is featured as well. First, the concept of hidden outliers is broached theoretical for this analysis. Then the developed technique is also used to validate the theoretical findings in more realistic contexts. For example, to show that hidden outliers could appear in many real-world data sets. All in all, this dissertation gives the field of outlier generation needed structure and shows their usefulness in tackling prominent challenges of the outlier detection problem

    Hiding Outliers in HighDimensional Data Spaces

    Get PDF
    Detecting outliers in high-dimensional data is crucial in many domains. Due to the curse of dimensionality, one typically does not detect outliers in the full space, but in subspaces of it. More specifically, since the number of subspaces is huge, the detection takes place in only some subspaces. In consequence, one might miss hidden outliers, i.e., outliers only detectable in certain subspaces. In this paper, we take the opposite perspective, which is of practical relevance as well, and study how to hide outliers in high-dimensional data spaces. We formally prove characteristics of hidden outliers. We also propose an algorithm to place them in the data. It focuses on the regions close to existing data objects and is more efficient than an exhaustive approach. In experiments, we both evaluate our formal results and show the usefulness of our algorithm using di↵erent subspace selection schemes, outlier detection methods and data sets

    Multimodal Lung Cancer Subtyping Using Deep Learning Neural Networks on Whole Slide Tissue Images and MALDI MSI

    No full text
    Artificial intelligence (AI) has shown potential for facilitating the detection and classification of tumors. In patients with non-small cell lung cancer, distinguishing between the most common subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SqCC), is crucial for the development of an effective treatment plan. This task, however, may still present challenges in clinical routine. We propose a two-modality, AI-based classification algorithm to detect and subtype tumor areas, which combines information from matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) data and digital microscopy whole slide images (WSIs) of lung tissue sections. The method consists of first detecting areas with high tumor cell content by performing a segmentation of the hematoxylin and eosin-stained (H&E-stained) WSIs, and subsequently classifying the tumor areas based on the corresponding MALDI MSI data. We trained the algorithm on six tissue microarrays (TMAs) with tumor samples from N = 232 patients and used 14 additional whole sections for validation and model selection. Classification accuracy was evaluated on a test dataset with another 16 whole sections. The algorithm accurately detected and classified tumor areas, yielding a test accuracy of 94.7% on spectrum level, and correctly classified 15 of 16 test sections. When an additional quality control criterion was introduced, a 100% test accuracy was achieved on sections that passed the quality control (14 of 16). The presented method provides a step further towards the inclusion of AI and MALDI MSI data into clinical routine and has the potential to reduce the pathologist’s work load. A careful analysis of the results revealed specific challenges to be considered when training neural networks on data from lung cancer tissue
    corecore